Cómo están implantando los bancos europeos el Big Data Analytics

aplicaciones, herramientas y oportunidades

Authors

  • Kuong Feng Iowa State University

DOI:

https://doi.org/10.22451/5817.ibj2023.vol7.1.11077

Abstract

El objetivo de este trabajo de investigación es analizar cómo los bancos comerciales indios manejan los big data, que se refiere a un conjunto de datos extremadamente grande que requiere análisis, gestión y validación a través de las herramientas tradicionales de gestión de datos.
Propósito: Los bancos son una de las industrias de servicios financieros que manejan una gran cantidad de datos de transacciones, que deben ser gestionados, examinados y utilizados en beneficio tanto del banco como de sus clientes. Este estudio examinará los factores que tienen un mayor impacto en los bancos a la hora de manejar big data y cómo la analítica puede crear valor para el negocio.
Métodos de investigación: Se recopilaron datos secundarios de diversas fuentes, como artículos, revistas y sitios web. El estudio se centra en la gestión de big data, la gestión de riesgos, la detección de fraudes, la segmentación de clientes y el valor empresarial de las industrias bancarias. Se ha desarrollado un marco conceptual para destacar los factores que tienen un mayor impacto en la gestión de big data en la industria bancaria.
Resultados: Los resultados indican que la analítica de big data tiene un impacto significativo en el valor de negocio de los bancos, y se han identificado los factores que influyen en el valor de negocio.
Conclusiones: Utilizando big data y adoptando las tecnologías emergentes, las empresas pueden aumentar el valor de su organización.

Downloads

Download data is not yet available.

References

F. Ghobadi, M. Rohani, “Cost Sensitive Modeling of Credit Card Fraud using Neural Network strategy”, 2016 Signal Processing and Intelligent Systems (ICSPIS), International Conference of pp. 1-5. IEEE.

Hesterberg, T., Moore, D.S., Monaghan, S., Clipson, A. and Epstein, R. (2003), “Bootstrap methods and permutation tests”, in Moore, D.S. and McCabe, G.P. (Eds.) Introduction to the Practice of Statistics (5th edition), available at: http://bcs.whfreeman.com/pbs/cat_160/PBS18.pd f

Hoyle, R.H. (Ed.), (1995) Structural Equation Modeling, SAGE Publications, Inc., Thousand Oaks, CA.

Hulland, J. (1999), “Use of partial least squares (PLS). Strategic management research: a review of four recent studies”, Strategic Management Journal, Vol. 20, No. 4, pp.195–204.

Hutter, T., Haeussler, S. & Missbauer, H., 2018. Successful implementation of an order release mechanism based on workload control: a case study of a make-to-stock manufacturer. International Journal of Production Research , 56(4), pp. 1565-1580.

IBM Tech Trends Report (2011), available at: http://www/ibm.com/developerworks/techtrends report

ISACA (2011), “Data Analysis – A Practical Approach”, available at: http://www.algaonline.org/DocumentCenter/View /2847

James, L. (2010), “Data Analysis for the Retail Industry”, 24 Oct, available at: http://www.yellowfinbi.com/YFCommunityNews Data-Analysis-for-the-Retail-Industry-Part-1 100068

Esposito Vinzi, V., Trinchera, L. and Amato, S. (2010), “PLS path modelling: from foundations to recent developments and open issues for model assessment and improvement”, in Esposito Vinzi, V., Chin, W.W., Henseler, J. and Wang, H. (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications, Springer Berlin Heidelberg, Berlin, pp.47–82.

Falcioni, J.G. (2013), “Smart factories, smarter engineers”, Marketing Engineering, available at: http://memagazineblog.org/2013/10/07/smarter factories-smarter-engineers/

Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. (1996), “From data mining to knowledge discovery: an overview”, in: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. (Eds.), Advances in Knowledge Discovery and Data Mining, MIT Press, Massachusetts, pp. 2-18.

Ji, W. & Wanga, L., 2017. Big data analytics based fault prediction for shop floor scheduling. Journal of Manufacturing Systems, Volume 43, pp. 187-194.

Johnsen, M. (2013), “Using big data to drive retail personalization”, Drugstorenews.com, available at: http://www.drugstorenews.com/article/using-big data-drive-retail-personalization

Jöreskog, K. and Sorbom, D. (1993) LISREL. VIII Scientific Software, Chicago, IL.

Keim, D. A., Mansmann, F., Schneidewind, J. and Ziegler, H. (2006), “Challenges in Visual Data Analysis”, IEEE Information Visualization.

Keim, D.A. (2009), “Visualization techniques for mining large databases: a comparison”, IEEE Transactions on Knowledge and Data Engineering, Vol. 8 No. 6, pp. 923–937

Lohmöller, J.B. (1989), “Latent Variable Path Modeling with Partial Least Squares”, Physica Verlag, Heidelberg. 50. Lohr, S. (2012), “The Age of Big Data”, The New York Times, available at: http://www.nytimes.com/2012/02/12/sunday review/big-datas-impact-in-the-world.html?

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and Byers, A.H. (2011), “Big data: The next frontier for innovation, competition, and productivity”, McKinsey Global Institute Report, available at: http://www.mckinsey.com/insights/business_tech nology/big_data_the_next_frontier_for_innovation

Pinsonneault, a. & kraemer, k. L. 1993. Survey research methodology in management information systems: an assessment. Journal of management information systems, 75- 105.

Flavian, C. and Guinaliu, M. (2006), “Consumer trust, perceived security and privacy policy: Three basic elements of loyalty to a web site”, Industrial Management & Data Systems, Vol. 106 No. 5, pp. 601-620.

Fornell, C. and Larcker, D. (1981), “Evaluating structural equitation models with unobservable variables and measurement errors”, Journal of Marketing Research, Vol. 18 No. 1, pp. 39–50.

Gefen, D., Straub, D. and Boudreau, M. (2000), “Structural equation modelling techniques and regression: guidelines for research practice”, Communications of the Association for Information Systems, Vol. 7, No. 7, pp.1–78.

Glaser, B.G. and Strauss, A.L. (1967), The Discovery of Grounded Theory: Strategies for Qualitative Research, Transaction Publishers, Chicago.

Graen, M. (1999), “Technology in Manufacturer/Retailer Integration between Wal Mart and Procter & Gamble, available at: http://citebm.business.illinois.edu/IT_cases/PG Graen.htm 35. Haenlein, M. and Kaplan, A.M. (2004), “A beginner’s guide to partial least squares analysis”, Understanding Statistics, Vol. 3 No. 4, pp. 283 297.

Porter, m. E. & millar, v. E. 1985. How information gives you competitive advantage. Harvard business review, reprint service.

Ramaswamy, V. and Gouillart, F.J. (2010) The Power of Co- creation: Build it with them to Boost Growth, Productivity, and Profits, Simon and Schuster, Noida.

Rao, A. M., & rothstein, m. A. How analytics is driving the banking innovation in north america., business & IT, 2022

Santhanam, r. & hartono, e. 2003. Issues in linking information technology capability to firm performance. Mis quarterly, 27, 125-153.

SCHULTE, R. (2000), “Application integration scenario: how the war is being won”, in Gartner Group (Ed.), Application Integration – Making E-Business Work, Gartner Group, London.

Zhang Y, Ren S, Liu Y, Si S. A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J Clean Prod 2017;142. https://doi.org/10.1016/j.jclepro.2016.07.123.

Zhang Z, et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat Mach Intell 2019;1(May). https://doi.org/10.1038/s42256- 019-0052-1.

Zhong RY, Newman ST, Huang GQ, Lan S. Big Data for banking management in the service and manufacturing sectors: challenges, opportunities, and future perspectives. Comput Ind Eng 2016;101. https://doi.org/10.1016/j. cie.2016.07.013.

Zhu K, Li G, Zhang Y. Big data oriented smart tool condition monitoring system. IEEE Trans Ind Inform 2019;16(6):1. https://doi.org/10.1109/tii.2019.2957107.

Davis, D.F., Golicic, S.L. and Boerstler, C.N. (2011), “Benefits and challenges of conducting multiple methods research in marketing”, Journal of the Academy of Marketing Science, Vol. 39 No. 3, pp. 467-479.

Donthu, N. and Yoo, B. (1998), “Retail productivity assessment using data envelopment analysis”, Journal of Retailing, Vol. 71 No. 1, pp. 89–105.

Published

2023-07-31

How to Cite

Feng, K. (2023). Cómo están implantando los bancos europeos el Big Data Analytics: aplicaciones, herramientas y oportunidades. Iberoamerican Business Journal, 7(1), 76–97. https://doi.org/10.22451/5817.ibj2023.vol7.1.11077