Advancements and Challenges in Regulating AI-Based Software as Medical Devices
Current Perspectives and Future Implications
DOI:
https://doi.org/10.22451/5817.ibj2024.vol7.2.11082Abstract
The use of artificial intelligence (AI) and machine learning (ML) is generating a significant transformation of the healthcare sector worldwide. These technologies are improving the efficiency of workflows, increasing the accuracy of diagnoses and raising the quality of patient treatment. However, they also pose complex regulatory challenges.
This article examines the need for fundamental changes in the way AI and AA-based medical software is regulated, taking the role undertaken by the FDA. A literature review was conducted to analyze the current landscape of medical software using AI and AA and the implications it has on the use of these technologies. Key challenges in the regulation of AI and OA in the healthcare sector are highlighted, including the need for systemic approaches and the importance of flexibility and ongoing oversight in regulation. It is concluded that a systemic regulatory perspective, assessing healthcare ecosystems as a whole, should be considered to effectively address the challenges and complexities associated with these technologies in healthcare. This approach will also help build confidence and recognition of the transformative potential of AI and AA in healthcare.
Downloads
References
Abràmoff, M. D., Cunningham, B., Patel, B., Eydelman, M. B., Leng, T., Sakamoto, T., Blodi, B., Grenon, S. M., Wolf, R. M., Manrai, A. K., Ko, J. M., Chiang, M. F., Char, D., Abramoff, M., Blumenkranz, M., Chew, E., Chiang, M., Eydelman, M., Myung, D., … Blumenkranz, M. (2022). Foundational Considerations for Artificial Intelligence Using Ophthalmic Images. Ophthalmology, 129(2), e14-e32. https://doi.org/10.1016/j.ophtha.2021.08.023 Abràmoff, M. D., Cunningham, B., Patel, B., Eydelman, M. B., Leng, T., Sakamoto, T., Blodi, B., Grenon, S. M., Wolf, R. M., Manrai, A. K., Ko, J. M., Chiang, M. F., Char, D., Abramoff, M., Blumenkranz, M., Chew, E., Chiang, M., Eydelman, M., Myung, D., … Blumenkranz, M. (2022). Foundational Considerations for Artificial Intelligence Using Ophthalmic Images. Ophthalmology, 129(2), e14-e32. https://doi.org/10.1016/j.ophtha.2021.08.023 Aggarwal, N., Ahmed, M., Basu, S., Curtin, J. J., Evans, B. J., Matheny, M. E., Nundy, S., Sendak, M. P., Shachar, C., Shah, R. U., & Thadaney-Israni, S. (2020). Advancing Artificial Intelligence in Health Settings Outside the Hospital and Clinic. NAM Perspectives, 2020, 10.31478/202011f. https://doi.org/10.31478/202011f Allison, K., & Gilbert, S. (2023). Regulating Artificial Intelligence: Lessons from Medical Devices. Stanford University’s Program on Geopolitics, Technology, and Governance. https://fsi9-prod.s3.us-west-1.amazonaws.com/s3fs-public/2023-11/2023-11-01_-_allison_gilbert-_regulating_ai_lessons_from_medical_devices.pdf Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Al Yami, M. S., Al Harbi, S., & Albekairy, A. M. (2023). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Medical Education, 23(1), 689. https://doi.org/10.1186/s12909-023-04698-z
Asan, O., Bayrak, A. E., & Choudhury, A. (2020). Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians. Journal of Medical Internet Research, 22(6), e15154. https://doi.org/10.2196/15154 Athanasopoulou, K., Daneva, G. N., Adamopoulos, P. G., & Scorilas, A. (2022). Artificial Intelligence: The Milestone in Modern Biomedical Research. BioMedInformatics, 2(4), Article 4. https://doi.org/10.3390/biomedinformatics2040049 Davahli, M. R., Karwowski, W., Fiok, K., Wan, T., & Parsaei, H. R. (2021). Controlling Safety of Artificial Intelligence-Based Systems in Healthcare. Symmetry, 13(1), Article 1. https://doi.org/10.3390/sym13010102 Ellahham, S., Ellahham, N., & Simsekler, M. C. E. (2020). Application of Artificial Intelligence in the Health Care Safety Context: Opportunities and Challenges. American Journal of Medical Quality, 35(4), 341-348. https://doi.org/10.1177/1062860619878515 Feng, J., Phillips, R. V., Malenica, I., Bishara, A., Hubbard, A. E., Celi, L. A., & Pirracchio, R. (2022). Clinical artificial intelligence quality improvement: Towards continual monitoring and updating of AI algorithms in healthcare. Npj Digital Medicine, 5(1), Article 1. https://doi.org/10.1038/s41746-022-00611-y Food and Drug Administration. (2019). Proposed regulatory framework for modifications to Artificial Intelligence/Machine Learning (AI/ML)-based Software as a Medical Device (SaMD) (United States of America). https://apo.org.au/node/228371 Gerke, S., Babic, B., Evgeniou, T., & Cohen, I. G. (2020). The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. Npj Digital Medicine, 3(1), Article 1. https://doi.org/10.1038/s41746-020-0262-2 Gilbert, S., Fenech, M., Hirsch, M., Upadhyay, S., Biasiucci, A., & Starlinger, J. (2021). Algorithm Change Protocols in the Regulation of Adaptive Machine Learning–Based Medical Devices. Journal of Medical Internet Research, 23(10), e30545. https://doi.org/10.2196/30545
Jia, Y. (2021). Embracing Machine Learning in Safety Assurance in Healthcare [PhD Thesis, University of York]. https://etheses.whiterose.ac.uk/30362/ Jorstad, K. T. (2020). Intersection of artificial intelligence and medicine: Tort liability in the technological age. Journal of Medical Artificial Intelligence, 3(0), Article 0. https://doi.org/10.21037/jmai-20-57 Khirasaria, R., Singh, V., & Batta, A. (2020). Exploring digital therapeutics: The next paradigm of modern health-care industry. Perspectives in Clinical Research, 11(2), 54-58. https://doi.org/10.4103/picr.PICR_89_19 Meskó, B., & Topol, E. J. (2023). The imperative for regulatory oversight of large language models (or generative AI) in healthcare. Npj Digital Medicine, 6(1), Article 1. https://doi.org/10.1038/s41746-023-00873-0 Muehlematter, U. J., Daniore, P., & Vokinger, K. N. (2021). Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): A comparative analysis. The Lancet Digital Health, 3(3), e195-e203. https://doi.org/10.1016/S2589-7500(20)30292-2 Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2021). Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Reviews in Biomedical Engineering, 14, 156-180. https://doi.org/10.1109/RBME.2020.3013489 Shumba, A.-T., Montanaro, T., Sergi, I., Fachechi, L., De Vittorio, M., & Patrono, L. (2022). Leveraging IoT-Aware Technologies and AI Techniques for Real-Time Critical Healthcare Applications. Sensors, 22(19), Article 19. https://doi.org/10.3390/s22197675 Thakkar, S., Slikker, W., Yiannas, F., Silva, P., Blais, B., Chng, K. R., Liu, Z., Adholeya, A., Pappalardo, F., Soares, M. da L. C., Beeler, P. E., Whelan, M., Roberts, R., Borlak, J., Hugas, M., Torrecilla-Salinas, C., Girard, P., Diamond, M. C., Verloo, D., … Tong, W. (2023). Artificial intelligence and real-world data for drug and food safety – A regulatory science perspective. Regulatory Toxicology and Pharmacology, 140, 105388. https://doi.org/10.1016/j.yrtph.2023.105388
Udagedara, R. S., & Allman, K. (2019). Organizational Dynamics and Adoption of Innovations: A Study within the Context of Software Firms in Sri Lanka. Journal of Small Business Management, 57(2), 450-475. https://doi.org/10.1111/jsbm.12378 Wellnhofer, E. (2022). Real-World and Regulatory Perspectives of Artificial Intelligence in Cardiovascular Imaging. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.890809
Published
How to Cite
License
Copyright (c) 2024 Iberoamerican Business Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores respetan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo Licencia Creative Commons Reconocimiento-NoComercial CompartirIgual 4.0, que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Es responsabilidad de los autores obtener los permisos necesarios de las imágenes que están sujetas a derechos de autor.
- Se les comunica los autores que todos los trabajos serán subidos al programa Turnitin para comprobar su originalidad.