Understanding the dynamics of conflicts in latin america

an approach from machine learning

Authors

  • Juan José Villar Roldán Universidad Internacional de La Rioja, España
  • Juan Manuel Martín Álvarez Universidad Internacional de La Rioja, España

DOI:

https://doi.org/10.22451/5817.ibj2023.vol7.1.11076

Abstract

The purpose of this document is to identify patterns in conflicts in Latin America from 1989 to the present. The article assumes that clustering can be used to achieve a greater systemic understanding of the correlations between politics, economics, and conflict. It starts from the assumption that the variables used are part of an interactive system with correlations yet to be understood. Clustering is the tool used to classify entities into groups to search for explanations based on cross-sectional characteristics of the objects in which they are integrated; thus, the analysis seeks a more tangible explanation of the complex links between economic, human development and conflict-related variables. Data from the Uppsala Conflict Dataset Program are used in the analysis to categorise actors present in conflicts based on a series of characteristics.

Downloads

Download data is not yet available.

Author Biographies

Juan José Villar Roldán, Universidad Internacional de La Rioja, España

Graduated in Industrial Engineering from Universidad Carlos III de Madrid (UC3M), he developed his Bachelor Thesis in time series analysis of macroeconomic indicators and their forecasting. Master in Business Intelligence from the International University of La Rioja (UNIR) with extensive experience in data consulting for the banking and energy sectors in London and Spain.

Juan Manuel Martín Álvarez , Universidad Internacional de La Rioja, España

D. in Economics with a focus on quantitative analysis for decision making. He has extensive teaching experience in public and private universities in the areas of Accounting, Finance, Statistics and Econometrics. He is Professor of Quantitative Methods for Economics and Business at the International University of La Rioja (UNIR). Currently, he is the director of the Master in Business Intelligence at the International University of La Rioja (UNIR). Finally, he has published more than 20 articles on Applied Economics, with special focus on tobacco consumption, in indexed journals.

References

Alvear, M. G., Giraldo, A., Valdez, S. & Ramírez, C. (2022). Disputa por el territorio, crimen organizado y autocorrelación espacial de homicidios en Veracruz, México, 2001-2018. Revista Colombiana de Sociología, 45(2), pp 223-251. https://doi.org/10.15446/rcs.v45n2/95919

Blair, R. A., & Sambanis, N. (2020). Forecasting civil wars: Theory and structure in an age of “Big Data” and machine learning. Journal of Conflict Resolution, 64(10), 1885-1915. https://doi.org/10.1177/0022002720918923

Bowlsby, D., Chenoweth, E., Hendrix, C., & Moyer, J. D. (2020). The future is a moving target: predicting political instability. British Journal of Political Science, 50(4), 1405-1417. https://doi.org/10.1017/S0007123418000443

Buhaug, H., & von Uexkull, N. (2021). Vicious circles: violence, vulnerability, and climate change. Annual Review of Environment and Resources, 46, 545-568. https://doi.org/10.1146/annurev-environ-012220-014708

Chen, C., Roberts, J., Adhikari, S., Asal, V., Beardsley, K., Gonzalez, E., ... & van Wijk, A. (2022). Tipping Points: Challenges in Analyzing International Crisis Escalation. International Studies Review, 24(3), viac024. https://doi.org/10.1093/isr/viac024

Cortés, A., et al. "Desarme, desmovilización y reintegración, DDR: una introducción para Colombia." Cuaderno de análisis 1.13 (2013): 1-88.

Dunn Cavelty, M., & Balzacq, T. (Eds.). (2016). Routledge Handbook of Security Studies (2nd ed.). Routledge. https://doi.org/10.4324/9781315753393

Duursma, A. (2022). Peacekeeping, Mediation, and the Conclusion of Local Ceasefires in Non-State Conflicts. Journal of Conflict Resolution, 00220027221148132. https://doi.org/10.1177/00220027221148132

Ge, Q., Hao, M., Ding, F., Jiang, D., Scheffran, J., Helman, D., & Ide, T. (2022). Modelling armed conflict risk under climate change with machine learning and time-series data. Nature communications, 13(1), 2839. https://doi.org/10.1038/s41467-022-30356-x

Gleditsch, K. S., & Ward, M. D. (2013). Forecasting is difficult, especially about the future: Using contentious issues to forecast interstate disputes. Journal of Peace Research, 50(1), 17-31. https://doi.org/10.1177/0022343312449033

Goldstone, J. A., Bates, R. H., Epstein, D. L., Gurr, T. R., Lustik, M. B., Marshall, M. G., Ulfelder, J. & Woodward, M. (2010). A global model for forecasting political instability. American Journal of Political Science, 54(1), 190-208. https://doi.org/10.1111/j.1540-5907.2009.00426.x

Hegre, H., Karlsen, J., Nygård, H. M., Strand, H., & Urdal, H. (2013). Predicting armed conflict, 2010–2050. International Studies Quarterly, 57(2), 250-270. https://doi.org/10.1111/isqu.12007

Hegre, H., Nygård, H. M., & Landsverk, P. (2021). Can we predict armed conflict? How the first 9 years of published forecasts stand up to reality. International Studies Quarterly, 65(3), 660-668. https://doi.org/10.1093/isq/sqaa094

Hernández, G. (2020). La política de seguridad en México entre 2012 y 2018. De la confrontación a la prevención del delito. Espiral (Guadalajara), 27(77), 43-79. https://doi.org/10.32870/eees.v27i77.7082

Hyde, S. D., & Saunders, E. N. (2020). Recapturing regime type in international relations: Leaders, institutions, and agency space. International Organization, 74(2), 363-395. https://doi.org/10.1017/S0020818319000365

Joshi, M. (2020). A comparative analysis of one-sided violence and civil war peace agreement implementation. Stability: International Journal of Security and Development, 9(1). https://doi.org/10.5334/sta.774

Khokhlov, N., & Korotayev, A. (2022). Internet, political regime and terrorism: A quantitative analysis. Cross-Cultural Research, 56(4), 385-418. https://doi.org/10.1177/10693971221085343

Lin, K., Yang, J., Giang, N., & Joye, C. (2021). Techniques for Forecasting Global Conflicts. http://dx.doi.org/10.2139/ssrn.3939995

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2022). cluster: Cluster Analysis Basics and Extensions. R package version 2.1.4 — For new features, see the 'Changelog' file (in the package source), https://CRAN.R-project.org/package=cluster

Metz, S. (1993) The Future of Insurgency, Carlisle, PA: Strategic Studies Insitute U.S. Army War College.

Pastor, M. L. (2020). El coronavirus golpea las finanzas de los cárteles mexicanos. Documento Informativo IEEE 15//2020. http://www.ieee.es/Galerias/fichero/docs_informativos/2020/DIEEEI15_2020LUIPAS_COVIDMexico.pdf

Pettersson, T., Davies, S., Deniz, A., Engström, G., Hawach, N., Högbladh, S., & Öberg, M. S. M. (2021). Organized violence 1989–2020, with a special emphasis on Syria. Journal of Peace Research, 58(4), 809-825. https://doi.org/10.1177/00223433211026126

Pinedo, M. E. (2021). La política después de la “guerra”. Los acuerdistas de Sendero Luminoso (1993-2020). Eirene Estudios de Paz y Conflictos, 4(7). https://orcid.org/0000-0003-3137-2424

Quevedo, N. (9 de mayo de 2015). «Los hilos sueltos de “Macaco”». El Espectador (Colombia). Consultado el 20 de mayo de 2023. https://www.elespectador.com/investigacion/los-hilos-sueltos-de-macaco-article-559630/

Quinn, J., Mason, T. D., Kirisci, M., & Sharif, S. (2023). Proto-Insurgency, Repression-Driven Contagion, and Civil War Onset. Defence and Peace Economics, 1-21. https://doi.org/10.1080/10242694.2023.2183346

R Core Team, “R: A language and environment for statistical computing”. R Foundation for Statistical Computing, Vienna, Austria, 2021, https:// www.R-project.org/

Redaelli, C. (2021). The War against Drugs: Challenges for International Humanitarian Law. Anuario Iberoamericano de Derecho Internacional Humanitario. http://dx.doi.org/10.2139/ssrn.3958287

Rénique, J. L. (2003). La voluntad encarcelada: las luminosas trincheras de combate de Sendero Luminoso del Perú. IEP. Lima.

Rokach, L., & Maimon, O. (2005). “Clustering methods” in Data mining and knowledge discovery handbook (pp. 321-352). Springer, Boston, MA.

RStudio Team. “RStudio: Integrated Development for R”. RStudio, PBC, Boston, MA URL, 2020, http://www.rstudio.com/

Ruan, P. U. (2021). El crimen en América Latina: desorden, fragmentación y transnacionalidad. Análisis del Real Instituto Elcano (ARI), (103), 1.

Russett, B. M., & Oneal, J. R. (2001). Triangulating peace: Democracy, interdependence, and international organizations. WW Norton & Company Incorporated.

Sundberg, R., & Melander, E. (2013). Introducing the UCDP georeferenced event dataset. Journal of Peace Research, 50(4), 523-532. https://doi.org/10.1177/0022343313484347

Wallensteen, P. (2018) Understanding Conflict Resolution. 5th edn. SAGE Publications. Available at: https://www.perlego.com/book/1432011/understanding-conflict-resolution-pdf (Accessed: 1 May 2023).

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Williford, G. W., & Atkinson, D. B. (2020). A Bayesian forecasting model of international conflict. The Journal of Defense Modeling and Simulation, 17(3), 235-242. https://doi.org/10.1177/1548512919827659

Published

2023-07-31

How to Cite

Villar Roldán, J. J., & Martín Álvarez , J. M. (2023). Understanding the dynamics of conflicts in latin america: an approach from machine learning. Iberoamerican Business Journal, 7(1), 47–75. https://doi.org/10.22451/5817.ibj2023.vol7.1.11076